

Bevel & Miter Gear Formulas

To Find	Rule	Formula
Pitch Diameter (PD)	Divide Number of Teeth (N) by Diametral Pitch (DP)	$PD = \frac{N}{DP}$
Tangent of Pitch Angle (Pa) of Driven	Divide Number of Teeth (N) in Driven by Number of Teeth (N) in Driver	tan(Pa Driven) = <u>N Driven</u> = Ratio
Pitch Angle (Pa) of Driver	Subtract Pitch Angle (Pa) of Driven from 90° $$	Pa Γ Driver = 90° - a Driven
Pitch Cone Radius (Pr)	Divide Pitch Diameter (PD) by Twice the Sine of Pitch Angle (P α)	$Pr = \frac{PD}{2\sin(P\alpha)}$
Tangent of Addendum Angle (α)	Divide Addendum (a) by Pitch Cone Radius (Cr)	$\tan(\alpha) = \frac{a}{Cr}$
Face Angle (Fa)	Add Addendum Angle (α) to Pitch Angle (P α)	$F\alpha = \alpha + P\alpha$
Tangent of Dedendum Angle (da)	Divide Dedendum (d) by Pitch Cone Radius (Cr)	$\tan(d\alpha) = \frac{d}{Cr}$
Root Angle (Ra)	Subtract Dedendum Angle (d α) from Pitch Angle (P α)	Ra = Pa - da
Angular Addendum (aΦ)	Multiply Addendum (a) by cosine of Pitch Angle (P α)	$a\Phi = a \times \cos(P\alpha)$
Outside Diameter (OD)	Add 2 Angular Addendum (aΦ) to Pitch Diameter (PD)	$OD = 2 a\Phi \times PD$
Mounting Distance (MD)	Add one-half the Pitch Diameter of Mating (PDg) plus Backing to Pitch Line (BL)	$MD = \frac{PDg}{2} + BL$
Distance From Cone Center to Crown (Cc)	Multiply one-half Outside Diameter (OD) by cotangent of Face Angle (Fa)	$Cc = \frac{OD}{2} \times cot(F\alpha)$
Backing to Crown (Bc)	Subtract Cone Center to Crown (Cc) from Mounting Distance (MD)	Bc = MD - Cc
Ratio	Divide Number of Teeth (N) in Driven by Number of Teeth (N) in Driver	Ratio = <u>N Driven</u> N Driver